

SAFETY DATA SHEET

This safety data sheet was created pursuant to the requirements of: Safety data sheet according to Regulation (EC) 2020/878

Revision date 20/10/2023 Revision Number 0.62

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product Name Epoxy Resin ER2218, Part A

Product Code(s) ER2218A, EER2218RP250G, EER2218K5K, EER2218K20K, ZE

Safety data sheet number 01708

Unique Formula Identifier (UFI) 5MQ4-T0KJ-0004-VNY4

Pure substance/mixture Mixture

1.2. Relevant identified uses of the substance or mixture and uses advised against

Recommended use Resin

Uses advised against No specific uses advised against are identified

1.3. Details of the supplier of the safety data sheet

<u>Manufacturer</u> <u>Supplier</u>

ELECTROLUBE

MacDermid Alpha Electronics Solutions
ASHBY PARK, COALFIELD WAY,
ASHBY DE LA ZOUCH,
LEICESTERSHIRE LE65 1JR

HK WENTWORTH LIMITED
32 RUE DE TOURNENFILS
91540 MENNECY
FRANCE

UNITED KINGDOM +33 (0) 1 82 88 47 94

+44 (0)1530 419600 info@electrolube.com +44 (0)1530 416640 info@electrolube.com

For further information, please contact

E-mail address info@electrolube.com

1.4. Emergency telephone number

Emergency Telephone POISON INFORMATION CENTRE (Beaumont Hospital, Republic of Ireland only) +353 (0)1

809 2166 (08:00 - 22:00)

Emergency Telephone - IN CASE OF EMERGENCY CALL: +44 1865 407333 (24hr, Provided by Carechem 24)

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification according to

Regulation (EC) No. 1272/2008 [CLP]

Skin corrosion/irritation	Category 2 - (H315)
Serious eye damage/eye irritation	Category 2 - (H319)
Skin sensitisation	Category 1 - (H317)
Chronic aquatic toxicity	Category 2 - (H411)

2.2. Label elements

Contains Reaction product: bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700), 1,3-bis(2,3-epoxypropoxy)-2,2-dimethylpropane, [[(2-ethylhexyl)oxy]methyl]oxirane, formaldehyde, oligomeric reaction products with 1-chloro-2,3-epoxypropane and phenol, oxirane, mono[(C12-14-alkyloxy)methyl] derivs.

Signal word

Warning

Hazard statements

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H319 - Causes serious eye irritation

H411 - Toxic to aquatic life with long lasting effects

Precautionary Statements - EU (§28, 1272/2008)

P261 - Avoid breathing vapours/spray.

P273 - Avoid release to the environment.

P280 - Wear protective gloves and eye/face protection.

P302 + P352 - IF ON SKIN: Wash with plenty of soap and water.

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P501 - Dispose of contents/container in accordance with local, regional, national, and international regulations as applicable.

2.3. Other hazards

This mixture contains no substance considered to be persistent, bioaccumulating or toxic (PBT). This mixture contains no substance considered to be very persistent nor very bioaccumulating (vPvB).

Endocrine Disruptor Information This product does not contain any known or suspected endocrine disruptors.

SECTION 3: Composition/information on ingredients

3.1 Substances

Not applicable

3.2 Mixtures

I	Chemical name	Weight-%	REACH registration	EC No (EU	Classification according	Specific	M-Factor	M-Factor

					-		
		number	Index No)	to Regulation (EC) No. 1272/2008 [CLP]	concentration limit (SCL)		(long-term)
Reaction product: bisphenol-A-(epichlo rhydrin) epoxy resin (number average molecular weight ≤ 700) 25068-38-6	30-60	01-2119456619-26-00 00	500-033-5	Aquatic Chronic 2 (H411) Skin Sens. 1 (H317) Eye Irrit. 2 (H319) Skin Irrit. 2 (H315)	Eye Irrit. 2 :: C>=5% Skin Irrit. 2 :: C>=5%	-	-
1,3-bis(2,3-epoxypr opoxy)-2,2-dimethyl propane 17557-23-2	10-30	No data available	241-536-7	Skin Sens. 1 (H317) Skin Irrit. 2 (H315)	-	-	-
[[(2-ethylhexyl)oxy] methyl]oxirane 2461-15-6	5-10	01-2119962196-31-00 00	219-553-6	Skin Sens. 1 (H317) Skin Irrit. 2 (H315)	-	-	-
Amorphous Silica 7631-86-9	1-5	17-2119421532-51-00 00	231-545-4	-	-	-	-
formaldehyde, oligomeric reaction products with 1-chloro-2,3-epoxyp ropane and phenol 9003-36-5	0.1-1	01-2119454392-40-00 00	500-006-8	Aquatic Chronic 2 (H411) Skin Sens. 1 (H317) Skin Irrit. 2 (H315)	-	-	-
oxirane, mono[(C12-14-alkyl oxy)methyl] derivs. 68609-97-2	0.1-1	01-2119485289-22-00 00	271-846-8	Skin Sens. 1 (H317) Skin Irrit. 2 (H315)	-	-	-
Cyclohexanone 108-94-1	<0.1	01-2119453616-35-00 00	203-631-1	Flam. Liq. 3 (H226) Acute Tox. 4 (H332)	-	-	-

Full text of H- and EUH-phrases: see section 16

Acute Toxicity Estimate

Chemical name	Oral LD50 mg/kg		Inhalation LC50 - 4 hour - dust/mist - mg/L	Inhalation LC50 - 4 hour - vapour - mg/L	Inhalation LC50 - 4 hour - gas - ppm
Reaction product: bisphenol-A-(epichlorhydr in) epoxy resin (number average molecular weight ≤ 700) 25068-38-6		No data available	No data available	No data available	No data available
1,3-bis(2,3-epoxypropoxy)-2,2-dimethylpropane 17557-23-2	4500	2000	No data available	No data available	No data available
[[(2-ethylhexyl)oxy]methyl]oxirane 2461-15-6	7800	No data available	No data available	No data available	No data available
Amorphous Silica 7631-86-9	7900	5000	58.8	No data available	No data available
formaldehyde, oligomeric reaction products with 1-chloro-2,3-epoxypropa ne and phenol 9003-36-5	2000	No data available	No data available	No data available	No data available
oxirane,	17100	3987	No data available	No data available	No data available

Chemical name	Oral LD50 mg/kg	Dermal LD50	Inhalation LC50 - 4	Inhalation LC50 - 4	Inhalation LC50 - 4
		mg/kg	hour - dust/mist - mg/L	hour - vapour - mg/L	hour - gas - ppm
mono[(C12-14-alkyloxy) methyl] derivs. 68609-97-2					
Cyclohexanone	1544	947	6.2	No data available	No data available

This product does not contain candidate substances of very high concern at a concentration >=0.1% (Regulation (EC) No. 1907/2006 (REACH), Article 59)

SECTION 4: First aid measures

4.1. Description of first aid measures

General advice Show this safety data sheet to the doctor in attendance.

Inhalation Remove to fresh air. Get medical attention immediately if symptoms occur.

Eye contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Remove contact lenses, if present and easy to do. Continue rinsing. Keep eye wide open while rinsing. Do not rub affected area. Get medical attention if irritation develops and

Revision date 20/10/2023

persists.

Skin contact May cause an allergic skin reaction. In the case of skin irritation or allergic reactions see a

doctor. Wash off immediately with soap and plenty of water for at least 15 minutes.

Ingestion Rinse mouth. Never give anything by mouth to an unconscious person. Do NOT induce

vomiting. Call a doctor.

Self-protection of the first aider Avoid contact with skin, eyes or clothing. Wear personal protective clothing (see section 8).

4.2. Most important symptoms and effects, both acute and delayed

Symptoms Itching. Rashes. Hives. May cause redness and tearing of the eyes. Burning sensation.

Effects of Exposure No information available.

4.3. Indication of any immediate medical attention and special treatment needed

Note to doctors May cause sensitisation in susceptible persons. Treat symptomatically.

SECTION 5: Firefighting measures

5.1. Extinguishing media

surrounding environment.

Large Fire CAUTION: Use of water spray when fighting fire may be inefficient.

Unsuitable extinguishing media Do not scatter spilled material with high pressure water streams.

5.2. Special hazards arising from the substance or mixture

Specific hazards arising from the

chemical

Product is or contains a sensitiser. May cause sensitisation by skin contact.

5.3. Advice for firefighters

Special protective equipment and precautions for fire-fighters

Firefighters should wear self-contained breathing apparatus and full firefighting turnout gear.

Use personal protection equipment.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Personal precautions Avoid contact with skin, eyes or clothing. Ensure adequate ventilation. Use personal

protective equipment as required. Evacuate personnel to safe areas. Keep people away

from and upwind of spill/leak.

Other information Refer to protective measures listed in Sections 7 and 8.

6.2. Environmental precautions

Environmental precautions Prevent further leakage or spillage if safe to do so.

6.3. Methods and material for containment and cleaning up

Methods for containment Prevent further leakage or spillage if safe to do so.

Methods for cleaning up Take up mechanically, placing in appropriate containers for disposal.

Prevention of secondary hazards Clean contaminated objects and areas thoroughly observing environmental regulations.

6.4. Reference to other sections

Reference to other sections See section 8 for more information. See section 13 for more information.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Advice on safe handling Handle in accordance with good industrial hygiene and safety practice. Avoid contact with

skin, eyes or clothing. Ensure adequate ventilation. In case of insufficient ventilation, wear suitable respiratory equipment. Do not eat, drink or smoke when using this product. Take off

contaminated clothing and wash it before reuse.

General hygiene considerations Wear suitable gloves and eye/face protection. Do not eat, drink or smoke when using this

product. Avoid contact with skin, eyes or clothing.

7.2. Conditions for safe storage, including any incompatibilities

Storage Conditions Keep containers tightly closed in a dry, cool and well-ventilated place.

7.3. Specific end use(s)

Risk Management Methods (RMM) The information required is contained in this Safety Data Sheet.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Exposure Limits

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies.

Chemical name	European Union	Austria	Belgium	Bulgaria	Croatia
Reaction product:	-	-	-	TWA: 1.0 mg/m ³	-
bisphenol-A-(epichlorhydr					
in) epoxy resin (number					
average molecular weight					
≤ 700)					
25068-38-6 Aluminium Hydroxide	_	TWA: 5 mg/m ³	_	TWA: 10.0 mg/m ³	
21645-51-2	-	STEL 10 mg/m ³	-	TWA: 10.0 mg/m ³	-
Amorphous Silica	TWA: 0.1 mg/m ³	TWA: 4 mg/m ³	TWA: 3 mg/m ³	TWA: 1.0 mg/m ³	TWA: 1.2 mg/m ³
7631-86-9	1	1 117 ti 1 111g/111	TWA: 10 mg/m ³	TWA: 0.1 mg/m ³	
Cyclohexanone	TWA: 10 ppm	TWA: 5 ppm	TWA: 10 ppm	STEL: 20 ppm	TWA: 10 ppm
108-94-1	TWA: 40.8 mg/m ³	TWA: 20 mg/m ³	TWA: 40.8 mg/m ³	STEL: 81.6 mg/m ³	TWA: 40.8 mg/m ³
	STEL: 20 ppm	STEL 20 ppm	STEL: 20 ppm	TWA: 10 ppm	STEL: 20 ppm
	STEL: 81.6 mg/m ³	STEL 80 mg/m ³ H*	STEL: 81.6 mg/m ³ D*	TWA: 40.8 mg/m ³ K*	STEL: 81.6 mg/m ³ *
Chemical name	Cyprus	Czech Republic	Denmark	Estonia	Finland
Aluminium Hydroxide 21645-51-2	-	TWA: 10.0 mg/m ³	-	-	-
Amorphous Silica	TWA: 0.1 mg/m ³	TWA: 0.1 mg/m ³	TWA: 1.5 mg/m ³	TWA: 2 mg/m ³	TWA: 5 mg/m ³
7631-86-9		TWA: 4.0 mg/m ³	STEL: 3 mg/m ³		
			uncalcinated with no content of Quartz		
Cyclohexanone	STEL: 20 ppm	TWA: 40 mg/m ³	TWA: 10 ppm	TWA: 10 ppm	TWA: 10 ppm
108-94-1	STEL: 81.6 mg/m ³	Ceiling: 80 mg/m ³	TWA: 10 ppm TWA: 41 mg/m ³	TWA: 10 ppm TWA: 40.8 mg/m ³	TWA: 10 ppm TWA: 41 mg/m ³
100 54 1	TWA: 10 ppm	D*	H*	STEL: 20 ppm	STEL: 20 ppm
	TWA: 40.8 mg/m ³	_	STEL: 81.6 mg/m ³	STEL: 81.6 mg/m ³	STEL: 82 mg/m ³
	3		STEL: 20 ppm	A*	iho*
Chemical name	France	Germany TRGS	Germany DFG	Greece	Hungary
Aluminium Hydroxide 21645-51-2	-	TWA: 1.25 mg/m ³ TWA: 10 mg/m ³	TWA: 4 mg/m ³ TWA: 1.5 mg/m ³	-	-
Amorphous Silica	-	TWA: 4 mg/m ³	TWA: 0.02 mg/m ³	TWA: 0.1 mg/m ³	-
7631-86-9	T) 1/4 / 10	T1444 00	Peak: 0.16 mg/m ³	T)4/4 50	T1444 40
Cyclohexanone	TWA: 10 ppm TWA: 40.8 mg/m ³	TWA: 20 ppm TWA: 80 mg/m ³	*	TWA: 50 ppm TWA: 200 mg/m ³	TWA: 10 ppm TWA: 40.8 mg/m ³
108-94-1	STEL: 20 ppm	H*		STEL: 100 mg/m ³	STEL: 20 ppm
	STEL: 81.6 mg/m ³	11		STEL: 100 ppm STEL: 400 mg/m ³	STEL: 81.6 mg/m ³
	0122. 01.0 mg/m			*	b*
Chemical name	Ireland	Italy MDLPS	Italy AIDII	Latvia	Lithuania
Aluminium Hydroxide	TWA: 10 mg/m ³	-	TWA: 1 mg/m ³	TWA: 6 mg/m ³	TWA: 6 mg/m ³
21645-51-2	TWA: 4 mg/m ³				
	STEL: 30 mg/m ³				
A 1 0'''	STEL: 12 mg/m³	T)4/4 0 1 1 0		T10/0 4 / 0	
Amorphous Silica	TWA: 6 mg/m ³	TWA: 0.1 mg/m ³	-	TWA: 1 mg/m ³	-
7631-86-9	TWA: 2.4 mg/m ³ STEL: 18 mg/m ³				
	STEL: 7.2 mg/m ³				
Cyclohexanone	TWA: 10 ppm	TWA: 10 ppm	TWA: 20 ppm	TWA: 10 ppm	STEL: 20 ppm

T\\/ / \	. 40 0 m a/m³	T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	T\\\\A \ 00 mg/m ³	Ι Τ\Λ/Λ. 4	0.0 ma/m3	CTFL 04 6 mg/m3	
						STEL: 81.6 mg/m ³	
						TWA: 10 ppm	
SIEL						TWA: 40.8 mg/m ³ O*	
1						Poland	
Lu	xembourg	IVIAIIA	ivetherianus	INC	ilway		
	-	-	-		-	TWA: 2.5 mg/m ³	
			TIMA: 0.075	T\\/	F / 2	TWA: 1.2 mg/m ³	
	-	-	1 VVA: 0.075 mg/m ³			TWA: 10 mg/m ³	
OT!		OTEL : 00 :- :-	OTEL : 40.0 ====		_	TWA: 2 mg/m ³	
						STEL: 80 mg/m ³	
						TWA: 40 mg/m³ skóra*	
		• • • • • • • • • • • • • • • • • • • •				SKOTA	
IVVA	•						
			Slovakia		• •	Spain	
		Rulliallia		310	veriia	TWA: 1 mg/m ³	
1 V V	A. Tillg/III°	-			-	TVVA. TINg/III	
Τ\Λ/Λ	· 0 05 mg/m³		T VVA. 4 IIIg/III°	T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		-	_	I VVA: 4 mg/m ³		-	
		T\\\\\\\ 10 ppm	T\//\.10 ppm	Τ\Λ/Λ.	10 ppm	TWA: 10 ppm	
						TWA: 10 ppin TWA: 41 mg/m ³	
						STEL: 20 ppm	
				STFI	1 6 mg/m ³	STEL: 82 mg/m ³	
			Coming. 62 mg/m		•	vía dérmica*	
		veden	Switzerland			ted Kingdom	
7		-				'A: 10 mg/m ³	
,						WA: 10 mg/m ³	
			17771. 10 1119/111			EL: 30 mg/m ³	
						EL: 12 mg/m ³	
		_	TWA: 4 mg/m ³	3		VA: 6 mg/m ³	
			TVVA. 4 mg/m²			A: 2.4 mg/m ³	
7631-86-9						EL: 18 mg/m ³	
						L: 7.2 mg/m ³	
Cyclohexanone E		KGV: 20 ppm	TWA: 25 ppm			VA: 10 ppm	
		• •				'A: 41 mg/m ³	
						EL: 20 ppm	
						EL: 82 mg/m ³	
		H*	H*			Sk*	
	STEL STEL STEL TWA TWA TWA TWA STEL STEL	Bindande Bindande k	STEL: 20 ppm STEL: 81.6 mg/m³ Sk* Luxembourg Malta - STEL: 20 ppm STEL: 81.6 mg/m³ Cute* STEL: 20 ppm STEL: 81.6 mg/m³ TWA: 10 ppm TWA: 40.8 mg/m³ Peau* TWA: 10 ppm TWA: 40.8 mg/m³ TWA: 10 ppm TWA: 40.8 mg/m³ TWA: 0.05 mg/m³ TWA: 0.1 mg/m³ TWA: 10 ppm TWA: 40.8 mg/m³ STEL: 20 ppm STEL: 81.6 mg/m³	STEL: 20 ppm STEL: 81.6 mg/m³ cute* STEL: 201 mg/m³ cute* Luxembourg Malta Netherlands - - - STEL: 20 ppm STEL: 20 ppm STEL: 20 ppm STEL: 20 ppm STEL: 20 ppm STEL: 12.3 ppm STEL: 81.6 mg/m³ STEL: 81.6 mg/m³ STEL: 50 mg/m³ TWA: 10 ppm TWA: 10 ppm STEL: 50 mg/m³ TWA: 10 ppm TWA: 10 ppm TWA: 1.5 mg/m³ TWA: 1 mg/m³ - TWA: 1.5 mg/m³ TWA: 0.05 mg/m³ - - TWA: 0.1 mg/m³ TWA: 40.8 mg/m³ TWA: 10 ppm TWA: 40.8 mg/m³ STEL: 20 ppm STEL: 20 ppm STEL: 81.6 mg/m³ STEL: 81.6 mg/m³ K* Cutânea* - TWA: 41 mg/m³ TWA: 10 mg/m³ TWA: 42 mg/m³ TWA: 10 mg/m³ TWA: 425 ppm Bindande KGV: 20 ppm TWA: 25 ppm Bindande KGV: 81 mg/m³ TWA: 100 mg/m NGV: 10 ppm STEL: 50 ppm STEL: 50 ppm STEL: 50 ppm	STEL: 20 ppm STEL: 20 ppm STEL: 81.6 mg/m³ Cute* STEL: 201 mg/m³ Cute* STEL: 201 mg/m³ Cute* A	STEL: 20 ppm STEL: 81.6 mg/m³ STEL: 81.6 mg/m³ cute* STEL: 81.6 mg/m³ sTEL: 20 ppm STEL: 81.6 mg/m³ cute* STEL: 201 mg/m³ sTEL: 81.6 mg/m³ cute* STEL: 81.6 mg/m³ sTEL: 81.6 mg/m³ cute* STEL: 20 ppm STEL: 81.6 mg/m³ sTEL: 81.6 mg/m³ sTEL: 81.6 mg/m³ sTEL: 81.6 mg/m³ stin* TWA: 0.075 mg/m³ sTEL: 3 mg/m³ sTEL: 3 mg/m³ sTEL: 3 mg/m³ sTEL: 81.6 mg/m³ stin* TWA: 10 ppm sTEL: 81.6 mg/m³ sTEL: 20 ppm sTEL: 50 mg/m³ sTEL: 20 ppm sTEL: 81.6 mg/m³ sTEL: 20 ppm sTEL: 80 mg/m³ sTEL: 20 ppm sTEL: 80 mg/m³ sTEL: 20 ppm sTEL: 80 mg/m³	

Biological occupational exposure limits

This product, as supplied, does not contain any hazardous materials with biological limits established by the region specific regulatory bodies.

Chemical name	European Union	Austria	Bulgaria	Croatia	Czech Republic
Cyclohexanone	-	-	-	-	0.049 µmol/mmol
108-94-1					Creatinine (urine -
					1,2-Cyclohexanediol
					end of shift at end of
					workweek)
					50 mg/g Creatinine
					(urine -
					1,2-Cyclohexanediol
					end of shift at end of
					workweek)
Chemical name	Denmark	Finland	France	Germany DFG	Germany TRGS
Cyclohexanone	-	-	-	50 mg/L -	-
108-94-1				(long-term exposure:	
				at the end of the shift	
				after several shifts) -	

			urine 100 mg/L - (long-term expo at the end of the after several sh urine 250 mg/L - (long-term expo at the end of the after several sh urine 6 mg/L - (end exposure or erd shift) - urine 12 mg/L - (end exposure or erd shift) - urine 30 mg/L - (end exposure or erd shift) - urine	ssure: e shift ifts) - e sure: e shift issure: e shift ifts) - d of nd of e id of e id of e id of e id of
Chemical name	Hungary	Ireland	Italy MDLPS	Italy AIDII
Cyclohexanone 108-94-1	-	8 mg/L (urine - Cyclohexanol end of shift) 80 mg/L (urine - 1,2-Cyclohexanediol end of shift)	<u>-</u>	80 mg/L - urine (1,2-Cyclohexanediol (with hydrolysis)) - end of shift at end of workweek 8 mg/L - urine (Cyclohexanol (with hydrolysis)) - end of shift
Chemical name	Slovenia	Spain	Switzerland	United Kingdom
Cyclohexanone 108-94-1	-	80 mg/L (urine - 1,2-Cyclohexanodiol (with hydrolysis) end of workweek) 8 mg/L (urine - Cyclohexanol (with hydrolysis) end of shift)	100 mg/L (urine - total	2 mmol/mol creatinine - urine (Cyclohexanol) - post shift

Derived No Effect Level (DNEL) - Workers

	Chemical name	Oral	Dermal	Inhalation
	Aluminium Hydroxide	-	-	10.76 mg/m³ [4] [6]
	21645-51-2			10.76 mg/m³ [5] [6]
Po	lyphosphoric acids, ammonium salts	-	-	18.06 mg/m³ [4] [6]
	68333-79-9			

Chemical name	Oral	Dermal	Inhalation
Bis(2-(2-butoxyethoxy)ethyl) adipate 141-17-3	-	1.4 mg/kg bw/day [4] [6]	4.9368 mg/m³ [4] [6]
[[(2-ethylhexyl)oxy]methyl]oxirane 2461-15-6	-	4.17 mg/kg bw/day [4] [6] 1 mg/kg bw/day [4] [7]	-
oxirane, mono[(C12-14-alkyloxy)methyl] derivs. 68609-97-2	-	1 mg/kg bw/day [4] [6]	3.6 mg/m³ [4] [6]
Cyclohexanone 108-94-1	-	4 mg/kg bw/day [4] [6] 4 mg/kg bw/day [4] [7]	40 mg/m³ [4] [6] 80 mg/m³ [4] [7] 40 mg/m³ [5] [6] 80 mg/m³ [5] [7]
Lithium chloride 7447-41-8	-	73.2 mg/kg bw/day [4] [6]	10 mg/m³ [4] [6] 30 mg/m³ [4] [7]

Derived No Effect Level (DNEL) - General Public .

Chemical name	Oral	Dermal	Inhalation
Aluminium Hydroxide 21645-51-2	4.74 mg/kg bw/day [4] [6]	-	-
Polyphosphoric acids, ammonium salts 68333-79-9	1.28 mg/kg bw/day [4] [6]	-	4.45 mg/m³ [4] [6]
Bis(2-(2-butoxyethoxy)ethyl) adipate 141-17-3	0.5 mg/kg bw/day [4] [6]	-	0.869 mg/m³ [4] [6]
[[(2-ethylhexyl)oxy]methyl]oxirane 2461-15-6	-	0.5 mg/kg bw/day [4] [6] 0.5 mg/kg bw/day [4] [7]	-
oxirane, mono[(C12-14-alkyloxy)methyl] derivs. 68609-97-2	0.5 mg/kg bw/day [4] [6]	-	0.87 mg/m ³ [4] [6]
Cyclohexanone 108-94-1	1.5 mg/kg bw/day [4] [6] 1.5 mg/kg bw/day [4] [7]	1 mg/kg bw/day [4] [6] 1 mg/kg bw/day [4] [7]	10 mg/m³ [4] [6] 20 mg/m³ [4] [7] 20 mg/m³ [5] [6] 40 mg/m³ [5] [7]
Lithium chloride 7447-41-8	7.32 mg/kg bw/day [4] [6] 21.96 mg/kg bw/day [4] [7]	50 mg/kg bw/day [4] [6] 50 mg/kg bw/day [4] [7]	10 mg/m³ [4] [6] 30 mg/m³ [4] [7]

Predicted No Effect Concentration (PNEC) .

Chemical name	Freshwater	Freshwater (intermittent release)	Marine water	Marine water (intermittent release)	Air
Bis(2-(2-butoxyethoxy)ethy I) adipate 141-17-3	0.013 mg/L	0.13 mg/L	0.0013 mg/L	0.013 mg/L	-
[[(2-ethylhexyl)oxy]methyl] oxirane 2461-15-6	0.0072 mg/L	0.072 mg/L	0.00072 mg/L	-	-
oxirane, mono[(C12-14-alkyloxy)me thyl] derivs. 68609-97-2	0.1058 mg/L	0.072 mg/L	0.01058 mg/L	-	-
[3-(2,3-epoxypropoxy)prop yl]trimethoxysilane 2530-83-8	0.45 mg/L	0.45 mg/L	0.045 mg/L	-	-

Revision date	20/10/2023
---------------	------------

Chemical name	Freshwater	Freshwater (intermittent release)	Marine water	Marine water (intermittent release)	Air
Cyclohexanone 108-94-1	0.0329 mg/L	0.329 mg/L	0.00329 mg/L	-	-
Lithium chloride 7447-41-8	10.4 mg/L	10.4 mg/L	1.04 mg/L	-	-

Chemical name	Freshwater sediment	Marine sediment	Sewage treatment	Soil	Food chain
Bis(2-(2-butoxyethoxy)ethy I) adipate 141-17-3	0.2436 mg/kg sediment dw	0.0244 mg/kg sediment dw	-	0.0411 mg/kg soil dw	-
[[(2-ethylhexyl)oxy]methyl] oxirane 2461-15-6	286.66 mg/kg sediment dw	28.66 mg/kg sediment dw	10 mg/L	57.16 mg/kg soil dw	-
oxirane, mono[(C12-14-alkyloxy)me thyl] derivs. 68609-97-2	307.16 mg/kg sediment dw	30.72 mg/kg sediment dw	10 mg/L	1.234 mg/kg soil dw	-
[3-(2,3-epoxypropoxy)prop yl]trimethoxysilane 2530-83-8	1.6 mg/kg sediment dw	0.16 mg/kg sediment dw	8.2 mg/L	0.063 mg/kg soil dw	-
Cyclohexanone 108-94-1	0.249 mg/kg sediment dw	0.0249 mg/kg sediment dw	10 mg/L	0.0304 mg/kg soil dw	-
Lithium chloride 7447-41-8	49.9 mg/kg sediment dw	4.99 mg/kg sediment dw	140.2 mg/L	4.13 mg/kg soil dw	-

8.2. Exposure controls

Engineering controls Ensure adequate ventilation, especially in confined areas.

Personal protective equipment

Eye/face protection Wear safety glasses with side shields (or goggles).

Hand protection Wear suitable gloves. Impervious gloves.

Skin and body protection Wear suitable protective clothing. Long sleeved clothing.

Respiratory protection No protective equipment is needed under normal use conditions. If exposure limits are

exceeded or irritation is experienced, ventilation and evacuation may be required.

General hygiene considerations Wear suitable gloves and eye/face protection. Do not eat, drink or smoke when using this

product. Avoid contact with skin, eyes or clothing.

Environmental exposure controls No information available.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state Liquid

ER2218A, EER2218RP250G, EER2218K5K, EER2218K20K, ZE - Epoxy Resin ER2218, Part A

Revision date 20/10/2023

AppearanceLiquidColourblack

Odour No information available.
Odour threshold No information available

<u>Property</u> <u>Values</u> <u>Remarks • Method</u>

Melting point / freezing pointNo data availableNone knownInitial boiling point and boiling rangeNo data availableNone knownFlammabilityNo data availableNone knownFlammability Limit in AirNone known

Upper flammability or explosive No data available

limits

Lower flammability or explosive No data available

limits

Flash point No data available None known Autoignition temperature No data available None known None known

Decomposition temperatureNo data availableNone knownpHNo data availableNone known

pH (as aqueous solution)

No data available

None known

No data available

None known

No data available

None known

None known

No data available

None known

Partition coefficient

Vapour pressure

Relative density

No data available

No data available

None known

No data available

None known

No data available

None known

Bulk density 1.22 kg/l

Liquid Density No data available

Relative vapour density

No data available

None known

Particle characteristics

Particle Size No information available Particle Size Distribution No information available

9.2. Other information

9.2.1. Information with regards to physical hazard classes

Explosive properties Not considered to be explosive.

Oxidising properties Does not meet the criteria for classification as oxidizing.

9.2.2. Other safety characteristics

No information available

SECTION 10: Stability and reactivity

10.1. Reactivity

Reactivity No information available.

10.2. Chemical stability

Stability Stable under normal conditions.

Explosion data

Sensitivity to mechanical impact None. Sensitivity to static discharge None.

10.3. Possibility of hazardous reactions

Possibility of hazardous reactions
None under normal processing.

10.4. Conditions to avoid

Conditions to avoidNone known based on information supplied.

10.5. Incompatible materials

Incompatible materials Strong acids. Strong bases. Strong oxidising agents.

10.6. Hazardous decomposition products

Hazardous decomposition products None known based on information supplied.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Information on likely routes of exposure

Product Information

Inhalation Specific test data for the substance or mixture is not available. May cause irritation of

respiratory tract.

Eye contact Specific test data for the substance or mixture is not available. Causes serious eye irritation.

(based on components). May cause redness, itching, and pain.

Skin contact May cause sensitisation by skin contact. Specific test data for the substance or mixture is

not available. Repeated or prolonged skin contact may cause allergic reactions with

susceptible persons. (based on components). Causes skin irritation.

Ingestion Specific test data for the substance or mixture is not available. Ingestion may cause

gastrointestinal irritation, nausea, vomiting and diarrhoea.

Symptoms related to the physical, chemical and toxicological characteristics

Symptoms Itching. Rashes. Hives. Redness. May cause redness and tearing of the eyes.

Acute toxicity

Numerical measures of toxicity

No information available

The following values are calculated based on chapter 3.1 of the GHS document

 ATEmix (oral)
 5,363.20 mg/kg

 ATEmix (dermal)
 2,668.00 mg/kg

 ATEmix (inhalation-gas)
 99,999.00 ppm

 ATEmix (inhalation-vapour)
 99,999.00 mg/l

 ATEmix (inhalation-dust/mist)
 123.20 mg/l

Chemical name	Oral LD50	Dermal LD50	Inhalation LC50
Reaction product:	= 11400 mg/kg (Rat)	-	-
bisphenol-A-(epichlorhydrin)			
epoxy resin (number average			
molecular weight ≤ 700)			
1,3-bis(2,3-epoxypropoxy)-2,2-d	= 4500 mg/kg (Rat)	> 2000 mg/kg (Rat)	-
imethylpropane			

[[(2-ethylhexyl)oxy]methyl]oxiran	= 7800 mg/kg (Rat)	-	-
е			
Amorphous Silica	= 7900 mg/kg (Rat)	> 5000 mg/kg (Rabbit)	> 58.8 mg/L (Rat)4 h
formaldehyde, oligomeric reaction products with 1-chloro-2,3-epoxypropane and phenol	> 2 g/kg (Rat)	-	-
oxirane, mono[(C12-14-alkyloxy)methyl] derivs.	= 17100 mg/kg (Rat)	> 3987 mg/kg (Rabbit)	-
Cyclohexanone	= 1544 mg/kg (Rat)	= 947 mg/kg (Rabbit)	> 6.2 mg/L (Rat) 4 h

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation Classification based on data available for ingredients. Causes skin irritation.

Serious eye damage/eye irritation Classification based on data available for ingredients. Causes serious eye irritation.

Respiratory or skin sensitisation May cause an allergic skin reaction.

Germ cell mutagenicityBased on available data, the classification criteria are not met.

Carcinogenicity Based on available data, the classification criteria are not met.

Reproductive toxicity Based on available data, the classification criteria are not met.

STOT - single exposure Based on available data, the classification criteria are not met.

STOT - repeated exposureBased on available data, the classification criteria are not met.

Aspiration hazard Based on available data, the classification criteria are not met.

11.2. Information on other hazards

11.2.1. Endocrine disrupting properties

Endocrine disrupting properties The substance/mixture does not contain components considered to have endocrine

disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

11.2.2. Other information

Other adverse effects No information available.

SECTION 12: Ecological information

12.1. Toxicity

Ecotoxicity

Toxic to aquatic life with long lasting effects.

Chemical name	Algae/aquatic plants	Fish	Toxicity to microorganisms	Crustacea
Amorphous Silica	EC50: =440mg/L (72h, Pseudokirchneriella subcapitata)	LC50: =5000mg/L (96h, Brachydanio rerio)	-	EC50: =7600mg/L (48h, Ceriodaphnia dubia)
Cyclohexanone	-	LC50: 481 - 578mg/L (96h, Pimephales promelas)	-	-

12.2. Persistence and degradability

Persistence and degradability

No information available.

12.3. Bioaccumulative potential

Bioaccumulation

There is no data for this product.

Chemical name	Partition coefficient
[[(2-ethylhexyl)oxy]methyl]oxirane	3.83
oxirane, mono[(C12-14-alkyloxy)methyl] derivs.	3.77
Cyclohexanone	0.86

12.4. Mobility in soil

Mobility in soil

No information available.

12.5. Results of PBT and vPvB assessment

PBT and vPvB assessment

The product does not contain any substance(s) classified as PBT or vPvB above the threshold of declaration.

Chemical name	PBT and vPvB assessment
Reaction product: bisphenol-A-(epichlorhydrin) epoxy resin (number	The substance is not PBT / vPvB
average molecular weight ≤ 700)	
[[(2-ethylhexyl)oxy]methyl]oxirane	The substance is not PBT / vPvB PBT assessment does
	not apply
Amorphous Silica	The substance is not PBT / vPvB
formaldehyde, oligomeric reaction products with	The substance is not PBT / vPvB
1-chloro-2,3-epoxypropane and phenol	
oxirane, mono[(C12-14-alkyloxy)methyl] derivs.	The substance is not PBT / vPvB
Cyclohexanone	The substance is not PBT / vPvB

12.6. Endocrine disrupting properties

Endocrine disrupting properties

The substance/mixture does not contain components considered to have endocrine disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

12.7. Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Waste from residues/unused

products

Dispose of in accordance with local regulations. Dispose of waste in accordance with

environmental legislation.

Contaminated packaging Do not reuse empty containers.

SECTION 14: Transport information

14.1 UN number or ID number UN3082

14.2 UN proper shipping name Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700))

14.3 Transport hazard class(es) q Ш

14.4 Packing group

Description

UN3082. Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700)), 9, III

14.5 Environmental hazards

14.6 Special precautions for user

Special Provisions ERG Code

A97, A158, A197

9L

Yes

IMDG

14.1 UN number or ID number UN3082

14.2 UN proper shipping name Environmentally hazardous substances, liquid, n.o.s.(Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700))

14.3 Transport hazard class(es)

14.4 Packing group

Description UN3082, Environmentally hazardous substances, liquid, n.o.s., 9, III, Marine pollutant

14.5 Environmental hazards Yes

14.6 Special precautions for user

Special Provisions

EmS-No

according to IMO instruments

274, 335, 969

F-A. S-F

14.7 Maritime transport in bulk

No information available

RID

14.1 UN number or ID number

14.2 UN proper shipping name Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700))

14.3 Transport hazard class(es)

14.4 Packing group

Description

UN3082, Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700)), 9, III

14.5 Environmental hazards Yes

14.6 Special precautions for user

Special Provisions

274, 335, 375, 601 M6

Classification code

UN3082

14.1 UN number or ID number 14.2 UN proper shipping name

Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700))

14.3 Transport hazard class(es)

14.4 Packing group

Description UN3082, Environmentally hazardous substances, liquid, n.o.s. (Reaction product:

bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700)), 9, III,

(-) Yes

14.5 Environmental hazards

ientai nazaros Y

14.6 Special precautions for user Special Provisions

274, 335, 601, 375

Classification code M6
Tunnel restriction code (-)

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Chemical name	French RG number
Amorphous Silica - 7631-86-9	RG 25
Cyclohexanone - 108-94-1	RG 84

Water hazard class (WGK) ob

obviously hazardous to water (WGK 2)

European Union

Take note of Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work.

Authorisations and/or restrictions on use:

This product does not contain substances subject to authorisation (Regulation (EC) No. 1907/2006 (REACH), Annex XIV) This product does not contain substances subject to restriction (Regulation (EC) No. 1907/2006 (REACH), Annex XVII)

Chemical name	Restricted substance per REACH Annex XVII	Substance subject to authorisation per REACH Annex XIV
Reaction product: bisphenol-A-(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700) - 25068-38-6	Use restricted. See item 75.	-
1,3-bis(2,3-epoxypropoxy)-2,2-dimethylpropane - 17557-23-2	Use restricted. See item 75.	-
oxirane, mono[(C12-14-alkyloxy)methyl] derivs 68609-97-2	Use restricted. See item 75.	-

Persistent Organic Pollutants

Not applicable

Ozone-depleting substances (ODS) regulation (EC) 1005/2009

Not applicable

Chemical name	EU - Plant Protection Products (1107/2009/EC)
Amorphous Silica - 7631-86-9	Plant protection agent

Chemical name	Biocidal Products Regulation (EU) No 528/2012 (BPR)		
Amorphous Silica - 7631-86-9	Product-type 18: Insecticides, acaricides and products to		
	control other arthropods		

International Inventories

TSCA Contact supplier for inventory compliance status **DSL/NDSL** Contact supplier for inventory compliance status Contact supplier for inventory compliance status **EINECS/ELINCS ENCS** Contact supplier for inventory compliance status Contact supplier for inventory compliance status **IECSC KECL** Contact supplier for inventory compliance status Contact supplier for inventory compliance status **PICCS** Contact supplier for inventory compliance status AIIC **NZIoC** Contact supplier for inventory compliance status

Legend:

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AIIC - Australian Inventory of Industrial Chemicals **NZIOC** - New Zealand Inventory of Chemicals

15.2. Chemical safety assessment

Chemical Safety Report No information available

SECTION 16: Other information

Key or legend to abbreviations and acronyms used in the safety data sheet

Full text of H-Statements referred to under section 3

H226 - Flammable liquid and vapour

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H319 - Causes serious eye irritation

H332 - Harmful if inhaled

H411 - Toxic to aquatic life with long lasting effects

Legend

SVHC: Substances of Very High Concern for Authorisation:

Legend Section 8: Exposure controls/personal protection

TWA TWA (time-weighted average) STEL STEL (Short Term Exposure Limit)

Ceiling Maximum limit value * Skin designation

+ Sensitisers

Classification procedure						
Classification according to Regulation (EC) No. 1272/2008 [CLP]	Method Used					
Acute oral toxicity	Calculation method					
Acute dermal toxicity	Calculation method					
Acute inhalation toxicity - gas	Calculation method					
Acute inhalation toxicity - vapour	Calculation method					
Acute inhalation toxicity - dust/mist	Calculation method					
Skin corrosion/irritation	Calculation method					
Serious eye damage/eye irritation	Calculation method					

Respiratory sensitisation	Calculation method
Skin sensitisation	Calculation method
Mutagenicity	Calculation method
Carcinogenicity	Calculation method
Reproductive toxicity	Calculation method
STOT - single exposure	Calculation method
STOT - repeated exposure	Calculation method
Acute aquatic toxicity	Calculation method
Chronic aquatic toxicity	Calculation method
Aspiration hazard	Calculation method
Ozone	Calculation method

Key literature references and sources for data used to compile the SDS

Agency for Toxic Substances and Disease Registry (ATSDR)

U.S. Environmental Protection Agency ChemView Database

European Food Safety Authority (EFSA)

European Chemicals Agency (ECHA) Committee for Risk Assessment (ECHA_RAC)

European Chemicals Agency (ECHA) (ECHA_API)

EPA (Environmental Protection Agency)

Acute Exposure Guideline Level(s) (AEGL(s))

U.S. Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act

U.S. Environmental Protection Agency High Production Volume Chemicals

Food Research Journal

Hazardous Substance Database

International Uniform Chemical Information Database (IUCLID)

National Institute of Technology and Evaluation (NITE)

Australian National Industrial Chemicals Notification and Assessment Scheme (NICNAS)

NIOSH (National Institute for Occupational Safety and Health)

National Library of Medicine's ChemID Plus (NLM CIP)

National Library of Medicine's PubMed database (NLM PUBMED)

National Toxicology Program (NTP)

New Zealand's Chemical Classification and Information Database (CCID)

Organisation for Economic Co-operation and Development Environment, Health, and Safety Publications

Organisation for Economic Co-operation and Development High Production Volume Chemicals Programme

Organisation for Economic Co-operation and Development Screening Information Data Set

World Health Organization

Revision date 20/10/2023

Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH)

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

SAFETY DATA SHEET

This safety data sheet was created pursuant to the requirements of: Safety data sheet according to Regulation (EC) 2020/878

Revision date 20/10/2023 Revision Number 1.62

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product Name Epoxy Resin ER2218, Part B

Product Code(s) ER2218B, EER2218RP250G, EER2218K5K, EER2218K20K, ZE

Safety data sheet number 00731

Unique Formula Identifier (UFI) QN02-T0J9-F004-XT21

Pure substance/mixture Mixture

1.2. Relevant identified uses of the substance or mixture and uses advised against

Recommended use Hardener

Uses advised against No specific uses advised against are identified

1.3. Details of the supplier of the safety data sheet

<u>Manufacturer</u> <u>Supplier</u>

ELECTROLUBE HK WENTWORTH LIMITED MacDermid Alpha Electronics Solutions ASHBY PARK, COALFIELD WAY, ASHBY DE LA ZOUCH, HK WENTWORTH LIMITED 32 RUE DE TOURNENFILS 91540 MENNECY FRANCE

LEICESTERSHIRE LE65 1JR

info@electrolube.com

UNITED KINGDOM +33 (0) 1 82 88 47 94

+44 (0)1530 419600 info@electrolube.com +44 (0)1530 416640

For further information, please contact

E-mail address info@electrolube.com

1.4. Emergency telephone number

Emergency Telephone POISON INFORMATION CENTRE (Beaumont Hospital, Republic of Ireland only) +353 (0)1

809 2166 (08:00 - 22:00)

Emergency Telephone - IN CASE OF EMERGENCY CALL: +44 1865 407333 (24hr, Provided by Carechem 24)

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification according to

Regulation (EC) No. 1272/2008 [CLP]

Acute toxicity - Oral	Category 4 - (H302)
Skin corrosion/irritation	Category 1 Sub-category B - (H314)
Serious eye damage/eye irritation	Category 1 - (H318)
Skin sensitisation	Category 1 - (H317)
Chronic aquatic toxicity	Category 2 - (H411)

2.2. Label elements

Contains Fatty acids, tall-oil, reaction products with tetraethylenepentamine, Phenol, styrenated, 2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine

Signal word

Danger

Hazard statements

H302 - Harmful if swallowed

H314 - Causes severe skin burns and eye damage

H317 - May cause an allergic skin reaction

H411 - Toxic to aquatic life with long lasting effects

Precautionary Statements - EU (§28, 1272/2008)

P273 - Avoid release to the environment.

P280 - Wear protective gloves/protective clothing/eye protection/face protection.

P301 + P330 + P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

P303 + P361 + P353 - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P501 - Dispose of contents/container in accordance with local, regional, national, and international regulations as applicable.

2.3. Other hazards

This mixture contains no substance considered to be persistent, bioaccumulating or toxic (PBT). This mixture contains no substance considered to be very persistent nor very bioaccumulating (vPvB).

Endocrine Disruptor Information This product does not contain any known or suspected endocrine disruptors.

SECTION 3: Composition/information on ingredients

3.1 Substances

Not applicable

3.2 Mixtures

Chemical name	Weight-%	REACH registration	FC No (FU	Classification according	Specific	M-Factor	M-Factor

Revision date 2	20/10/2023
-----------------	------------

		number	Index No)	to Regulation (EC) No.	concentration		(long-term)
		Tidiliboi	maox moj	1272/2008 [CLP]	limit (SCL)		(long tom)
Fatty acids, tall-oil, reaction products with tetraethylenepentam ine 68953-36-6	30-60	No data available	273-201-6	Aquatic Chronic 2 (H411) Skin Sens. 1 (H317)	-	-	-
Phenol, styrenated 61788-44-1	10-30	01-2119980970-27-00 00	262-975-0	Aquatic Chronic 2 (H411) Skin Sens. 1 (H317) Skin Irrit. 2 (H315)	-	-	-
2-Piperazin-1-ylethyl amine 140-31-8	10-30	01-2119471486-30-00 03	205-411-0	Aquatic Chronic 3 (H412) Skin Corr. 1B (H314) Skin Sens. 1 (H317) Acute Tox. 4 (H302) Acute Tox. 4 (H312) Eye Dam. 1 (H318)	-	-	-
3,6,9-Triazaundeca methylenediamine 112-57-2	1-5	No data available	203-986-2	Aquatic Chronic 2 (H411) Skin Corr. 1B (H314) Skin Sens. 1 (H317) Acute Tox. 4 (H302) Acute Tox. 4 (H312) Eye Dam. 1 (H318)	-	-	-

Full text of H- and EUH-phrases: see section 16

Acute Toxicity Estimate

Chemical name	Oral LD50 mg/kg	Dermal LD50	Inhalation LC50 - 4	Inhalation LC50 - 4	Inhalation LC50 - 4
		mg/kg	hour - dust/mist - mg/L	hour - vapour - mg/L	hour - gas - ppm
Phenol, styrenated 61788-44-1	2100	7940	No data available	No data available	No data available
2-Piperazin-1-ylethylamin e 140-31-8	2097.2	866	No data available	No data available	No data available
3,6,9-Triazaundecamethy lenediamine 112-57-2	3990	655.38	No data available	No data available	No data available

This product does not contain candidate substances of very high concern at a concentration >=0.1% (Regulation (EC) No. 1907/2006 (REACH), Article 59)

SECTION 4: First aid measures

4.1. Description of first aid measures

General advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Inhalation Remove to fresh air. If breathing has stopped, give artificial respiration. Get medical

attention immediately. Do not use mouth-to-mouth method if victim ingested or inhaled the

substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. If breathing is difficult, (trained personnel should) give oxygen. Delayed pulmonary edema may occur. Get immediate medical attention.

Eye contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Keep

eye wide open while rinsing. Do not rub affected area. Remove contact lenses, if present

and easy to do. Continue rinsing. Get immediate medical attention.

Skin contact Wash off immediately with soap and plenty of water while removing all contaminated clothes

and shoes. Get immediate medical attention. May cause an allergic skin reaction.

Ingestion Do NOT induce vomiting. Rinse mouth. Never give anything by mouth to an unconscious

person. Get immediate medical attention.

Self-protection of the first aider Ensure that medical personnel are aware of the material(s) involved, take precautions to

protect themselves and prevent spread of contamination. Wear personal protective clothing (see section 8). Avoid contact with skin, eyes or clothing. Avoid direct contact with skin. Use

barrier to give mouth-to-mouth resuscitation.

4.2. Most important symptoms and effects, both acute and delayed

Symptoms Burning sensation. Itching. Rashes. Hives.

Effects of Exposure No information available.

4.3. Indication of any immediate medical attention and special treatment needed

Note to doctors Product is a corrosive material. Use of gastric lavage or emesis is contra-indicated. Possible

perforation of stomach or esophagus should be investigated. Do not give chemical

antidotes. Asphyxia from glottal edema may occur. Marked decrease in blood pressure may occur with moist rales, frothy sputum, and high pulse pressure. May cause sensitisation in

susceptible persons. Treat symptomatically.

SECTION 5: Firefighting measures

5.1. Extinguishing media

surrounding environment.

Large Fire CAUTION: Use of water spray when fighting fire may be inefficient.

Unsuitable extinguishing mediaDo not scatter spilled material with high pressure water streams.

5.2. Special hazards arising from the substance or mixture

Specific hazards arising from the

chemical

The product causes burns of eyes, skin and mucous membranes. Thermal decomposition can lead to release of irritating gases and vapours. Product is or contains a sensitiser. May

cause sensitisation by skin contact.

5.3. Advice for firefighters

Special protective equipment and precautions for fire-fighters

Firefighters should wear self-contained breathing apparatus and full firefighting turnout gear. Use personal protection equipment.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Personal precautions Avoid contact with skin, eyes or clothing. Ensure adequate ventilation. Use personal

protective equipment as required. Attention! Corrosive material. Evacuate personnel to safe

areas. Keep people away from and upwind of spill/leak.

Other information Refer to protective measures listed in Sections 7 and 8.

6.2. Environmental precautions

Environmental precautions Prevent further leakage or spillage if safe to do so. Should not be released into the

environment. Do not allow to enter into soil/subsoil. Prevent product from entering drains.

6.3. Methods and material for containment and cleaning up

Methods for containment Prevent further leakage or spillage if safe to do so.

Methods for cleaning upTake up mechanically, placing in appropriate containers for disposal.

Prevention of secondary hazards Clean contaminated objects and areas thoroughly observing environmental regulations.

6.4. Reference to other sections

Reference to other sections See section 8 for more information. See section 13 for more information.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Advice on safe handling Handle in accordance with good industrial hygiene and safety practice. Avoid contact with

skin, eyes or clothing. In case of insufficient ventilation, wear suitable respiratory equipment. Handle product only in closed system or provide appropriate exhaust ventilation. Do not eat, drink or smoke when using this product. Take off contaminated clothing and wash it before

reuse.

General hygiene considerations Avoid contact with skin, eyes or clothing. Wear suitable gloves and eye/face protection. Do

not eat, drink or smoke when using this product. Remove and wash contaminated clothing and gloves, including the inside, before re-use. Contaminated work clothing should not be allowed out of the workplace. Regular cleaning of equipment, work area and clothing is recommended. Wash hands before breaks and immediately after handling the product.

7.2. Conditions for safe storage, including any incompatibilities

Storage Conditions Keep containers tightly closed in a dry, cool and well-ventilated place. Keep out of the reach

of children. Store locked up. Protect from moisture. Store away from other materials.

7.3. Specific end use(s)

Risk Management Methods (RMM) The information required is contained in this Safety Data Sheet.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Exposure Limits This product, as supplied, does not contain any hazardous materials with occupational

exposure limits established by the region specific regulatory bodies.

Biological occupational exposure

limits

This product, as supplied, does not contain any hazardous materials with biological limits

established by the region specific regulatory bodies.

Derived No Effect Level (DNEL) - Workers

Chemical name	Oral	Dermal	Inhalation
2-Piperazin-1-ylethylamine 140-31-8	-	3.33 mg/kg bw/day [4] [6]	10.6 mg/m³ [4] [6] 10.6 mg/m³ [4] [7] 15 µg/m³ [5] [6] 80 mg/m³ [5] [7]
Phenol, styrenated 61788-44-1	_	21 mg/kg bw/day [4] [6]	74 mg/m³ [4] [6]

Derived No Effect Level (DNEL) - General Public

Chemical name	Oral	Dermal	Inhalation
Phenol, styrenated 61788-44-1	7.5 mg/kg bw/day [4] [6]	-	13.1 mg/m³ [4] [6]

Predicted No Effect Concentration (PNEC)

Chemical name	Freshwater	Freshwater	Marine water	Marine water	Air
		(intermittent release)		(intermittent release)	
2-Piperazin-1-ylethylamine 140-31-8	0.058 mg/L	0.58 mg/L	0.0058 mg/L	-	-
Phenol, styrenated 61788-44-1	4 μg/L	46 μg/L	0.4 μg/L	4.6 μg/L	-

Chemical name	Freshwater	Marine sediment	Sewage treatment	Soil	Food chain
	sediment				
2-Piperazin-1-ylethylamine	215 mg/kg sediment	21.5 mg/kg	250 mg/L	1 mg/kg soil dw	-
140-31-8	dw	sediment dw			
Phenol, styrenated	0.248 mg/kg	24.8 µg/kg sediment	36.2 mg/L	47.3 μg/kg soil dw	-
61788-44-1	sediment dw	dw			

8.2. Exposure controls

Engineering controls Ensure adequate ventilation, especially in confined areas.

Personal protective equipment

Eye/face protection Tight sealing safety goggles. Face protection shield.

Hand protection Wear suitable gloves. Impervious gloves.

Skin and body protection Wear suitable protective clothing. Long sleeved clothing. Chemical resistant apron.

Respiratory protection No protective equipment is needed under normal use conditions. If exposure limits are

exceeded or irritation is experienced, ventilation and evacuation may be required.

General hygiene considerations Avoid contact with skin, eyes or clothing. Wear suitable gloves and eye/face protection. Do

not eat, drink or smoke when using this product. Remove and wash contaminated clothing and gloves, including the inside, before re-use. Contaminated work clothing should not be allowed out of the workplace. Regular cleaning of equipment, work area and clothing is recommended. Wash hands before breaks and immediately after handling the product.

None known

Environmental exposure controls No information available.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical stateLiquidAppearanceLiquidColourDark amberOdourAmines.

Odour threshold No information available

Property Values Remarks • Method

Melting point / freezing pointNo data availableNone knownInitial boiling point and boiling rangeNo data availableNone knownFlammabilityNo data availableNone knownFlammability Limit in AirNone known

Upper flammability or explosive No data available

limite

Lower flammability or explosive No data available

limits

Flash pointNo data availableNone knownAutoignition temperatureNo data availableNone known

Decomposition temperature None known

pH No data available None known
pH (as aqueous solution) No data available None known
Kinematic viscosity No data available None known
Dynamic viscosity 300 mPa s @ 23°C/73.4°F None known

None known No data available Water solubility None known No data available Solubility(ies) None known **Partition coefficient** No data available None known Vapour pressure No data available None known Relative density No data available None known

Bulk density 0.95 kg/l

Liquid Density No data available

Relative vapour density

No data available

Particle characteristics

Particle Size No information available
Particle Size Distribution No information available

9.2. Other information

9.2.1. Information with regards to physical hazard classes

Explosive properties Not considered to be explosive.

Oxidising properties Does not meet the criteria for classification as oxidizing.

9.2.2. Other safety characteristics

No information available

SECTION 10: Stability and reactivity

10.1. Reactivity

Reactivity No information available.

10.2. Chemical stability

Stability Stable under normal conditions.

Explosion data

Sensitivity to mechanical impact None. Sensitivity to static discharge None.

10.3. Possibility of hazardous reactions

Possibility of hazardous reactions None under normal processing.

10.4. Conditions to avoid

Conditions to avoid Exposure to air or moisture over prolonged periods.

10.5. Incompatible materials

Incompatible materials Acids. Bases. Oxidising agent.

10.6. Hazardous decomposition products

Hazardous decomposition products None known based on information supplied.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Information on likely routes of exposure

Product Information

Inhalation Specific test data for the substance or mixture is not available. Corrosive by inhalation.

(based on components). Inhalation of corrosive fumes/gases may cause coughing, choking, headache, dizziness, and weakness for several hours. Pulmonary edema may occur with tightness in the chest, shortness of breath, bluish skin, decreased blood pressure, and increased heart rate. Inhaled corrosive substances can lead to a toxic edema of the lungs.

Pulmonary edema can be fatal.

Eye contact Specific test data for the substance or mixture is not available. Causes serious eye damage.

(based on components). Corrosive to the eyes and may cause severe damage including

blindness. May cause irreversible damage to eyes.

Skin contact Specific test data for the substance or mixture is not available. Corrosive. (based on

components). Causes burns. May cause sensitisation by skin contact. Repeated or prolonged skin contact may cause allergic reactions with susceptible persons. May be

absorbed through the skin in harmful amounts. Harmful in contact with skin.

Ingestion Specific test data for the substance or mixture is not available. Causes burns. (based on

components). Ingestion causes burns of the upper digestive and respiratory tracts. May cause severe burning pain in the mouth and stomach with vomiting and diarrhea of dark blood. Blood pressure may decrease. Brownish or yellowish stains may be seen around the mouth. Swelling of the throat may cause shortness of breath and choking. May cause lung

damage if swallowed. May be fatal if swallowed and enters airways.

Symptoms related to the physical, chemical and toxicological characteristics

Symptoms Redness. Burning. May cause blindness. Coughing and/ or wheezing. Itching. Rashes.

Hives.

Acute toxicity

Numerical measures of toxicity

No information available

The following values are calculated based on chapter 3.1 of the GHS document

 ATEmix (oral)
 6,055.60 mg/kg

 ATEmix (dermal)
 13,322.20 mg/kg

 ATEmix (inhalation-gas)
 99,999.00 ppm

 ATEmix (inhalation-vapour)
 99,999.00 mg/l

 ATEmix (inhalation-dust/mist)
 99,999.00 mg/l

Chemical name	Oral LD50	Dermal LD50	Inhalation LC50
Phenol, styrenated	2100 - 6700 mg/kg (Rat)	> 7940 mg/kg (Rabbit)	> 2.5 mg/L (Rat)6 h
2-Piperazin-1-ylethylamine	= 2140 μL/kg (Rat)	= 866 mg/kg (Rabbit)	-
3,6,9-Triazaundecamethylenedi amine	= 3990 mg/kg (Rat)	= 660 μL/kg (Rabbit)	-

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation Classification based on data available for ingredients. Causes severe skin burns and eye

damage.

Serious eye damage/eye irritation Classification based on data available for ingredients. Causes serious eye damage. Causes

burns.

Respiratory or skin sensitisation May cause an allergic skin reaction.

Germ cell mutagenicity Based on available data, the classification criteria are not met.

Carcinogenicity Based on available data, the classification criteria are not met.

Reproductive toxicity Based on available data, the classification criteria are not met.

STOT - single exposure Based on available data, the classification criteria are not met.

STOT - repeated exposure Based on available data, the classification criteria are not met.

Aspiration hazard Based on available data, the classification criteria are not met.

11.2. Information on other hazards

11.2.1. Endocrine disrupting properties

Endocrine disrupting properties The substance/mixture does not contain components considered to have endocrine

disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

11.2.2. Other information

Other adverse effects No information available.

SECTION 12: Ecological information

12.1. Toxicity

Ecotoxicity Toxic to aquatic life with long lasting effects. Harmful to aquatic life.

Chemical name	Algae/aquatic plants	Fish	Toxicity to microorganisms	Crustacea
2-Piperazin-1-ylethylamin e	EC50: =495mg/L (72h, Pseudokirchneriella subcapitata)	LC50: 1950 - 2460mg/L (96h, Pimephales promelas) LC50: >1000mg/L (96h, Poecilia reticulata) LC50: >=100mg/L (96h, Oncorhynchus mykiss)	-	EC50: =32mg/L (48h, Daphnia magna)
3,6,9-Triazaundecamethy lenediamine	EC50: =2.1mg/L (72h, Pseudokirchneriella subcapitata)	LC50: =420mg/L (96h, Poecilia reticulata)	-	EC50: =24.1mg/L (48h, Daphnia magna)

12.2. Persistence and degradability

Persistence and degradability No information available.

12.3. Bioaccumulative potential

Bioaccumulation There is no data for this product.

Chemical name	Partition coefficient
Phenol, styrenated	3.13
2-Piperazin-1-ylethylamine	-1.48
3,6,9-Triazaundecamethylenediamine	1

12.4. Mobility in soil

Mobility in soil No information available.

12.5. Results of PBT and vPvB assessment

PBT and vPvB assessment The product does not contain any substance(s) classified as PBT or vPvB above the

threshold of declaration.

Chemical name	PBT and vPvB assessment
Phenol, styrenated	The substance is not PBT / vPvB
2-Piperazin-1-ylethylamine	The substance is not PBT / vPvB

12.6. Endocrine disrupting properties

Endocrine disrupting properties The substance/mixture does not contain components considered to have endocrine

disrupting properties according to REACH Article 57(f) or Commission Delegated regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at levels of 0.1% or higher.

12.7. Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Waste from residues/unused

products

Dispose of in accordance with local regulations. Dispose of waste in accordance with

environmental legislation.

Contaminated packaging Do not reuse empty containers.

SECTION 14: Transport information

<u>IATA</u>

14.1 UN number or ID number

Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine) 14.2 UN proper shipping name

14.3 Transport hazard class(es) 14.4 Packing group

Description UN1760, Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine,

3,6,9-Triazaundecamethylenediamine), 8, II

14.5 Environmental hazards

14.6 Special precautions for user

Special Provisions ERG Code 8L

A3, A803

Yes

Yes

IMDG

14.1 UN number or ID number

14.2 UN proper shipping name Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine)

14.3 Transport hazard class(es) 14.4 Packing group

Description UN1760, Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine), 8, II, Marine pollutant

14.5 Environmental hazards

14.6 Special precautions for user

Special Provisions 274 **EmS-No** F-A, S-B

14.7 Maritime transport in bulk No information available

according to IMO instruments

RID

14.1 UN number or ID number UN1760

14.2 UN proper shipping name Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine)

14.3 Transport hazard class(es) 8
14.4 Packing group

Description UN1760, Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine,

3,6,9-Triazaundecamethylenediamine), 8, II, Environmentally Hazardous

14.5 Environmental hazards Yes

14.6 Special precautions for user

Special Provisions 274 **Classification code** C9

ADR

14.1 UN number or ID number UN1760

14.2 UN proper shipping name Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine, 3,6,9-Triazaundecamethylenediamine)

14.3 Transport hazard class(es)14.4 Packing group

Description UN1760, Corrosive liquid, n.o.s. (2-Piperazin-1-ylethylamine,

3,6,9-Triazaundecamethylenediamine), 8, II, (E), Environmentally Hazardous

14.5 Environmental hazards Ye

14.6 Special precautions for user

Special Provisions274Classification codeC9Tunnel restriction code(E)

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Chemical name	French RG number
3,6,9-Triazaundecamethylenediamine - 112-57-2	RG 49,RG 49bis

Water hazard class (WGK) obviously hazardous to water (WGK 2)

European Union

Take note of Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work.

Authorisations and/or restrictions on use:

This product does not contain substances subject to authorisation (Regulation (EC) No. 1907/2006 (REACH), Annex XIV) This product does not contain substances subject to restriction (Regulation (EC) No. 1907/2006 (REACH), Annex XVII)

Chemical name	Restricted substance per REACH Annex XVII	Substance subject to authorisation per REACH Annex XIV
2-Piperazin-1-ylethylamine - 140-31-8	Use restricted. See item 75.	-
3,6,9-Triazaundecamethylenediamine - 112-57-2	Use restricted. See item 75.	-

Persistent Organic Pollutants

Not applicable

Ozone-depleting substances (ODS) regulation (EC) 1005/2009

Not applicable

International Inventories

Contact supplier for inventory compliance status **TSCA DSL/NDSL** Contact supplier for inventory compliance status **EINECS/ELINCS** Contact supplier for inventory compliance status Contact supplier for inventory compliance status **ENCS** Contact supplier for inventory compliance status **IECSC** Contact supplier for inventory compliance status **KECL PICCS** Contact supplier for inventory compliance status Contact supplier for inventory compliance status AIIC **NZIoC** Contact supplier for inventory compliance status

<u>Legend:</u>

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AllC - Australian Inventory of Industrial Chemicals **NZIoC** - New Zealand Inventory of Chemicals

15.2. Chemical safety assessment

Chemical Safety Report No information available

SECTION 16: Other information

Key or legend to abbreviations and acronyms used in the safety data sheet

Full text of H-Statements referred to under section 3

H302 - Harmful if swallowed

H312 - Harmful in contact with skin

H314 - Causes severe skin burns and eye damage

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H318 - Causes serious eye damage

H411 - Toxic to aquatic life with long lasting effects

H412 - Harmful to aquatic life with long lasting effects

Legend

SVHC: Substances of Very High Concern for Authorisation:

Legend Section 8: Exposure controls/personal protection

TWA TWA (time-weighted average) STEL STEL (Short Term Exposure Limit)

Ceiling Maximum limit value * Skin designation

+ Sensitisers

Classification procedure	
Classification according to Regulation (EC) No. 1272/2008 [CLP]	Method Used

Acute oral toxicity	Calculation method
Acute dermal toxicity	Calculation method
Acute inhalation toxicity - gas	Calculation method
Acute inhalation toxicity - vapour	Calculation method
Acute inhalation toxicity - dust/mist	Calculation method
Skin corrosion/irritation	Calculation method
Serious eye damage/eye irritation	Calculation method
Respiratory sensitisation	Calculation method
Skin sensitisation	Calculation method
Mutagenicity	Calculation method
Carcinogenicity	Calculation method
Reproductive toxicity	Calculation method
STOT - single exposure	Calculation method
STOT - repeated exposure	Calculation method
Acute aquatic toxicity	Calculation method
Chronic aquatic toxicity	Calculation method
Aspiration hazard	Calculation method
Ozone	Calculation method

Key literature references and sources for data used to compile the SDS

Agency for Toxic Substances and Disease Registry (ATSDR)

U.S. Environmental Protection Agency ChemView Database

European Food Safety Authority (EFSA)

European Chemicals Agency (ECHA) Committee for Risk Assessment (ECHA_RAC)

European Chemicals Agency (ECHA) (ECHA_API)

EPA (Environmental Protection Agency)

Acute Exposure Guideline Level(s) (AEGL(s))

U.S. Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act

U.S. Environmental Protection Agency High Production Volume Chemicals

Food Research Journal

Hazardous Substance Database

International Uniform Chemical Information Database (IUCLID)

National Institute of Technology and Evaluation (NITE)

Australian National Industrial Chemicals Notification and Assessment Scheme (NICNAS)

NIOSH (National Institute for Occupational Safety and Health)

National Library of Medicine's ChemID Plus (NLM CIP)

National Library of Medicine's PubMed database (NLM PUBMED)

National Toxicology Program (NTP)

New Zealand's Chemical Classification and Information Database (CCID)

Organisation for Economic Co-operation and Development Environment, Health, and Safety Publications

Organisation for Economic Co-operation and Development High Production Volume Chemicals Programme

Organisation for Economic Co-operation and Development Screening Information Data Set

World Health Organization

Revision date 20/10/2023

Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH)

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet